

Identification of Unmarked Graves Using Remote Sensing Technologies

By Dr. Abdul Raouf

Myths About Technology

- LiDAR is a magical tool to use for this purpose and if mounted on a Remotely Piloted Aerial Systems (RPAS) it can cover wide areas in a shorter period of time
- Ground Penetration Radar (GPR) will show the skeleton of a person buried in a grave just like it was shown in the movie "Jurassic Park"

The Technologies

- Light Detection and Ranging (LiDAR)
- Aerial Photographs
- Ground Penetration Radars

Light Detection and Ranging

- An active remote sensing sensor
- Shoots laser pulses towards the target and receives reflected echoes
- Works on the time of flight principle
- More sensitive to elevation or height variation
- Vertical accuracy is within a few centimetres

LiDAR Characteristics

- Pulse: A clump of timestamped photons emitted by LiDAR
 Transmitter
- Echo: A portion of the pulse reflected from target. A pulse can have multiple echoes
- A LiDAR system is usually characterized by its:

Time of Flight (ToF) Principle

- Time of Flight (ToF) = $t_2 t_1 = \Delta t$
- Where t_1 is the time when pulse was transmitted and t_2 is when it was received
- The range (distance of the target from the LiDAR) is given by:
- Range (R) = $\frac{c(\Delta t)}{2}$
- $c = 299,792,458 \frac{m}{s} \approx 2.99 \ 10^8 \ \frac{m}{s}$

Sequential Firing

- A LiDAR system fires LASER pulses towards the target which are reflected back after striking the target
- The nest pulse cannot be fired unless the previous pulse is received back by the receiver
- A sufficient time difference between the shooting pulses is required
- Firing LASER pulses at a frequency so that each pulse is received back after reflecting from the target before firing the next pulse is called sequential firing

Sequential Firing: Achieving Balance

• If a LiDAR system is firing (*N*) number of pulses in one second, the rate of average energy delivered at the target is given by:

 $E_R = P_T (FWHM)N$

- The maximum power of each LASER pulse is P_T
- A pulse can travel a longer distance (range) by increasing its power P_T
- The pulse will take a longer time to return if it has to travel a longer distance
- It will reduce the pulses shooting frequency
- Increasing peak power P_T of pulses will also dissipate more heat. Thus, a better cooling system will be required to prevent overheating

Multiple Returns

 Assume a LiDAR system has a range of *R*. Its transmitter is shooting LASER pulses with divergence angle *θ*. Diameter of the LiDAR beam footprint on the ground is given by:

Footprint diameter = $D_T + R\theta$

 There could be several targeted within the LiDAR beam footprint and within its range

Multiple Returns

- Differentiation of multiple returns is possible because of sequential firing
- The range to each target is calculated by:

•
$$t_o - t_1 = \Delta t_1 R_1 = \frac{C(\Delta t_1)}{2}$$

• $t_o - t_2 = \Delta t_2 R_2 = \frac{C(\Delta t_2)}{2}$

•
$$t_o - t_3 = \Delta t_3 R_3 = \frac{c(\Delta t_3)}{2}$$

LiDAR Scanning Mechanism

- The transmitter optics of a LiDAR system include a scanning mechanism for the system
- It determines its FOV or swath width.
- Circular footprint of the system is its IFOV
- $FOV = 2h \tan(\frac{\vartheta}{2})$
- ϑ is scan angle, h is flying altitude

LiDAR Scanning Mechanism

- For a LiDAR system that has a fixed scan angle (θ), the ratio of its FOV to its height remains constant
- $\frac{FOV}{h} = constant$
- Similarly, the scan frequency (f_s) of the scanning mechanism is inversely proportional to its FOV

•
$$f_s \propto \frac{1}{FOV}$$
 or $f_s (FOV) = constant$

LiDAR Scanning Mechanism

- While scanning mechanism is scanning the swath width, the transmitter of the LiDAR system is shooting LASER pulses creating several circular LASER footprints across the swath width
- Sufficient separation between these footprints is required to distinguish return echoes from each footprint
- Sequential firing of pulses also imposes restrictions on the pulse frequency (f_p) of the LiDAR system
- Since echoes will take a longer time to return for longer ranges, the pulse frequency (f_p) is inversely proportional to the height of the aerial LiDAR systems

•
$$f_p \propto \frac{1}{h}$$
 or $f_p(h) = constant$

Typical LiDAR wavelengths

- A LiDAR system can be designed using ultraviolet, visible and infrared wavelength
- Some of these wavelengths are as given below:

Spectral Region	Wavelength	Application
Ultraviolet	250 nm	Meteorology
Blue – Green	500 – 600 nm	Bathymetry
Near Infrared	1040 – 1060 nm	Topography
Infrared	1500 – 2000 nm	Meteorology

LiDAR Image of City Cemetery, Moose Jaw

Passive Remote Sensing

- An optical sensor (camera or scanner) mounted on a platform
- Data is acquired in digital form and downloaded for processing
- Sensor can acquire images in different wavelength region
- Can cover bigger area in shorter time
- Three resolutions to consider:
 - Spatial Resolution
 - Spectral Resolution
 - Radiometric Resolution

Spatial Resolution

- An ability of a sensor to record the smallest object which can be identified in the image
- It represents the details in the image
- An image having greater details also has a better spatial resolution. An image having smaller identifiable objects has better spatial resolution
- It can also be related with the pixel size in an image

Effect of Spatial Resolution on Image

Landsat-8, Band-8 (15m)

Landsat-8, Band-1 (30m)

Landsat-8, Band-10 (100m)

Spectral Resolution

- Each wavelength region acts differently with the objects.
- Some wavelength regions reflect more than others
- A sensor capable of acquiring images in multiple wavelength bands will have a better spectral resolution
- The number of spectral bands and the spectral width of each band defines the spectral resolution of the sensor
- Greater number of bands or narrow spectral widths result in a better spectral resolution

Effect of Spectral Resolution on Images

Landsat-8, Band-4

Landsat-8, Band-5

Radiometric Resolution

- Image pixel values can quantize depending on the sensors' capability to record the data in the form of bits
- These quantiles are sometimes also referred to as the number of gray levels
- The number of quantization will keep on increasing as the recording bit capacity of the sensors is increasing
- The file size will also increase with an increasing number of recordable bits in the data

Effect of Radiometric Resolution on Images

2 bit data (4 gray levels)

4 bit data (16 gray levels)

8 bit data (256 gray levels)

Bits	Calculations	Gray Levels	Min-Max Value
1	2 ¹ = 2	2	0 - 1
2	$2^2 = 4$	4	0 - 3
4	2 ⁴ = 16	16	0 - 15
8	2 ⁸ = 256	256	0 - 255
16	2 ¹⁶ = 256	65,536	0 - 65,535

Cemetery Mapping Using Aerial Images

Valley View Cemetery

Valley View Cemetery

An Unknown Location

SASKATCHEWAN POLYTECHNIC

An Unknown Location

SASKATCHEWAN POLYTECHNIC

A Birds Eye View

Ground Penetration Radar (GPR)

- It is a manually operated device having three components
- The transmitter transmits radio waves into the ground
- The radio waves travel deep into the ground and reflect back from an underground target indicating an anomaly
- The reflected signal is received by the receiver
- It is also displayed on a screen
- Can be post-processed for further analysis

GPR Working

GPR Frequencies and Applications

Frequency	Depth (Wet soil)	Depth (Dry soil)	Application
100 MHz	12 m	30 m	Geotechnical
250 MHz	4.5 m	9 m	Utility mapping
500 MHz	1.8 m	5 m	Archeology
1,000 MHz	0.6 m	1.8 m	Bridge deck
2,000 MHz	0.2 m	0.6 m	Concrete

GPR Survey Considerations

- Some soils may not allow deeper penetration
- Clay rich or wet soils may not be ideal for GPR surveys
- Deeper objects usually require lower frequencies
- Lower frequencies also have lower detection resolution
- Ideal depth to object size ratio is 24:1
- 1 cm object can be detected up to 24 cm depths

Size, Shape and Orientation of the Object

- An object will reflect more and will appear brighter if more surface area is exposed to the GPR signal
- Round spheres will appear as hyperbola
- A linear object will appear as a point if GPR survey lines are perpendicular to the object and will appear flat if survey lines are parallel to the object
- Objects beneath another object may not be seen

GPR Scan Setup

- Line spacing needed to setup for grid scan
- The grid has to be rectangular
- Grid scan is time consuming

Gird size	Area (hectares)	Area (acres)	Line Spacing	Total Distance	Time Required
10 m x 10 m	0.01	0.025	1.0 m	0.20 km	0.25 h
10 m x 10 m	0.01	0.025	0.5 m	0.40 km	0.5 h
10 m x 10 m	0.01	0.025	0.25 m	0.80 km	1.0 h
64 m x 64 m	≈ 0.4	≈ 1.0	1.0 m	8.00 km	10 h
64 m x 64 m	≈ 0.4	≈ 1.0	0.5 m	16.00 km	20 h
64 m x 64 m	≈ 0.4	≈ 1.0	0.25 m	32.00 km	40.0 h
100 m x 100 m	1	2.47	1.0 m	20.00 km	25.0 h
100 m x 100 m	1	2.47	0.5 m	40.00 km	50.0 h
100 m x 100 m	1	2.47	0.25 m	80.00 km	100.0 h

GPR Grid Scan (Line Spacing 0.25 m)

GPR Grid Scan (Line Spacing 0.5 m)

GPR Grid Scan (Line Spacing 1.0 m)

GPR Limitations

- The GPR data may not determine the age, sex or burial time
- GPR signal might go through multiple reflections when it is trapped in a hollow object. These multiple reflections are termed as airwaves and may be misleading
- Tunnels dug by small animals can also cause air waves
- The GPR signal is subject to external interferences such as external magnetic fields caused by powerlines
- The signal can reflect off tree branches and nearby buildings

Conclusion

- Using multiple technologies can enhance interpretation accuracies
- GRID scan can provide better images at different depths and is a laborious and a time-consuming procedure
- Line scans can be performed in a relatively short time but require expertise for data interpretation

